

Progressive Education Society's Modern College of Arts, Science & Commerce Ganeshkhind, Pune – 16 (Autonomous)

End Semester Examination: MAR / APR 2025 Faculty: Science and Technology

Program: B.Sc. (Gen 03) Semester: VI SET: A

Program (Specific): General B.Sc.

Class: T.Y.B.Sc

Max. Marks: 35

Name of the Course: Nuclear Physics

Course Code: 24-PHY-364 Time: 2Hr

Paper: IV

Instructions to the candidate:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Draw a well labelled diagram wherever necessary.

Q1) Define or state the following

5

- a) What is compound Nucleus?
- b) Define radioactivity.
- c) Define packing fraction.
- d) What is a quark?
- e) Define binding energy.

Q2) Answer the following. (Attempt any 4)

4

- a) What is recovery time in G.M counter?
- b) If we have function f(x) for which f(x) = -f(x), what is its parity?
- c) Which force holds the nucleon together in a nucleus?
- d) What is an exoergic and endoergic reaction?
- e) What is the roll of effective multiplication factor (k) in chain reaction?
- f) What do you mean by critical size of the reactor?

Q3) Answer the following. (Attempt any 4/6)

8

- a) Write a short note on electrical quadrupole moment.
- b) State any three conservation laws in nuclear reaction.
- c) Explain lepton in short.
- d) Describe ideal equilibrium.
- e) Write a short note on carbon dating.
- f) Obtain the threshold energy for the following reaction

$$_{83}$$
 Bi 209 + p \rightarrow $_{83}$ Bi 208 + $_{1}$ H 2

Where mass of $_{83}$ Bi 209 =208.980394 a.m.u Mass of proton = 1.007825 a.m.u Mass of $_{83}$ Bi 208 =207.979731 a.m.u

Q4) Short answer questions (Attempt any 2/4)

8

- a) Explain the construction and working of cyclotron.
- b) Explain with a neat labelled diagram working of scintillation counter.
- c) Calculate the energy released during the following fusion reaction

2
$$_1$$
 H 1 + 2 $_0$ n 1 \rightarrow $_2$ He 4
Where mass of $_1$ H 1 =1.007825 a.m.u mass of $_0$ n 1 = 1.008665 a.m.u mass of $_2$ He 4 = 4.003424 a.m.u

d) Derive the equation $N = No e^{-\sigma nx}$ for nuclear cross-section.

Q5) Attempt any two of the following (2/4)

10

- a) Draw a diagram of swimming pool reactor and explain it.
- b) Derive an equation for the specific activity.
- c) Describe proton proton cycle.
- d) Explain binding energy curve.